Weak Acid-Weak Base Problems – Set II

1. $C_6H_4NH_2COOH$, para-aminobenzoic acid (PABA), is used in some sunscreen agents. Calculate the K_a of this acid, if a 0.06 M solution has a measured pH of 3.1. Start by writing an equation that represents an equilibrium solution of PABA. (answer: 1.0 x 10⁻⁵)

 $C_6H_4NH_2COOH + H_2O_{(1)} \iff$

2. Trimethylamine, $(CH_3)_3N$, is a gas with a fishy, ammonia-like odor. The K_b of trimethylamine is 3.15×10^{-5} . Calculate the pH of an aqueous 0.20 M trimethylamine basic solution. Start by writing an equilibrium equation that represents the system. **(answer: 11.4)**

$$(CH_3)_3N_{(aq)}$$
 + $H_2O_{(l)}$

3. Barbituric acid, $C_3H_3ON_2COOH$, is used to prepare various barbiturate drugs (used as sedatives). Given: $K_a = 9.8 \times 10^{-5}$, calculate the percent ionization of a 0.5 M barbituric acid solution. (answer: 1.4 %)

 $C_3H_3ON_2COOH + H_2O_{(I)} \iff$

4. A 0.2 M solution of a weak acid, HX, is 12% ionized. Calculate the K_a of this acid. (answer: 3.27 x 10⁻³)

 \Leftrightarrow

5. (a) Calculate the pH of a 1.0 M H_2S solution. $K_a = 1.0 \times 10^{-7}$. (answer: 3.5)

 \Leftrightarrow

(b) Determine the percent ionization of a 1.0 M H₂S solution. (answer: 0.0316 %)